【AI最新動向 2026年2月17日】論文5件・GitHub5件

【AI最新動向 2026年2月17日】論文5件・GitHub5件

📝 この記事のポイント

  • 🚀 AI技術の最新動向 - 2026年2月17日 世界中から収集したAI・機械学習の最新情報をお届けします 📑 目次💻 注目のGitHubプロジェクトmilanm/AutoGrad-Enginevixhal-baraiya/microgpt-cKuberwastaken/picogptdoramirdor/NadirClawbenoitc/erlang-python📌 関連記事もチェック📚 最新研究論文1. Symmetry in language statistics shapes the geometry of model representations著者: Dhruva Karkada, Daniel J. Korchinski, Andres NavaAlthough learned representations underlie neural networks' success, their fundamental properties remain poorly understood. A striking example is the emergence of simple geometric structures in LLM representations: for example, calendar months organize into a circle, years form a smooth one-dimension...論文を読む →2. Long Context, Less Focus: A Scaling Gap in LLMs Revealed through Privacy and Personalization著者: Shangding GuLarge language models (LLMs) are increasingly deployed in privacy-critical and personalization-oriented scenarios, yet the role of context length in shaping privacy leakage and personalization effectiveness remains largely unexplored. We introduce a large-scale benchmark, PAPerBench, to systematical...論文を読む →3. Rethinking Diffusion Models with Symmetries through Canonicalization with Applications to Molecular Graph Generation著者: Cai Zhou, Zijie Chen, Zian LiMany generative tasks in chemistry and science involve distributions invariant to group symmetries (e.g., permutation and rotation). A common strategy enforces invariance and equivariance through architectural constraints such as equivariant denoisers and invariant priors. In this paper, we challeng...論文を読む →💻 注目のGitHubプロジェクト1. milanm/AutoGrad-EngineA complete GPT language model (training and inference) in ~600 lines of pure C#, zero dependencies⭐ 290 stars | 🔀 31 forksリポジトリを見る →2. vixhal-baraiya/microgpt-cThe most atomic way to train and inference a GPT in pure, dependency-free C⭐ 162 stars | 🔀 31 forksリポジトリを見る →3. Kuberwastaken/picogptGPT in a QR Code ; The actual most atomic way to train and inference a GPT in pure, dependency-free JS/Python.⭐ 84 stars | 🔀 9 forksリポジトリを見る →4. doramirdor/NadirClawOpen-source LLM router that saves you money. Routes simple prompts to cheap/local models, complex ones to premium — automatically. OpenAI-compatible proxy.⭐ 29 stars | 🔀 5 forksリポジトリを見る →5. benoitc/erlang-pythonExecute Python from Erlang using dirty NIFs with GIL-aware execution, rate limiting, and free-threading support⭐ 13 stars | 🔀 1 forksリポジトリを見る →。
目次

🚀 AI技術の最新動向 – 2026年2月17日

世界中から収集したAI・機械学習の最新情報をお届けします


📑 目次

  1. 💻 注目のGitHubプロジェクト
    1. milanm/AutoGrad-Engine
    2. vixhal-baraiya/microgpt-c
    3. Kuberwastaken/picogpt
    4. doramirdor/NadirClaw
    5. benoitc/erlang-python
  2. 📌 関連記事もチェック

📚 最新研究論文

1. Symmetry in language statistics shapes the geometry of model representations

著者: Dhruva Karkada, Daniel J. Korchinski, Andres Nava

Although learned representations underlie neural networks' success, their fundamental properties remain poorly understood. A striking example is the emergence of simple geometric structures in LLM representations: for example, calendar months organize into a circle, years form a smooth one-dimension…

論文を読む →

2. Long Context, Less Focus: A Scaling Gap in LLMs Revealed through Privacy and Personalization

著者: Shangding Gu

Large language models (LLMs) are increasingly deployed in privacy-critical and personalization-oriented scenarios, yet the role of context length in shaping privacy leakage and personalization effectiveness remains largely unexplored. We introduce a large-scale benchmark, PAPerBench, to systematical…

論文を読む →

3. Rethinking Diffusion Models with Symmetries through Canonicalization with Applications to Molecular Graph Generation

著者: Cai Zhou, Zijie Chen, Zian Li

Many generative tasks in chemistry and science involve distributions invariant to group symmetries (e.g., permutation and rotation). A common strategy enforces invariance and equivariance through architectural constraints such as equivariant denoisers and invariant priors. In this paper, we challeng…

論文を読む →

💻 注目のGitHubプロジェクト

1. milanm/AutoGrad-Engine

A complete GPT language model (training and inference) in ~600 lines of pure C#, zero dependencies

⭐ 290 stars | 🔀 31 forks

リポジトリを見る →

2. vixhal-baraiya/microgpt-c

The most atomic way to train and inference a GPT in pure, dependency-free C

⭐ 162 stars | 🔀 31 forks

リポジトリを見る →

3. Kuberwastaken/picogpt

GPT in a QR Code ; The actual most atomic way to train and inference a GPT in pure, dependency-free JS/Python.

⭐ 84 stars | 🔀 9 forks

リポジトリを見る →

4. doramirdor/NadirClaw

Open-source LLM router that saves you money. Routes simple prompts to cheap/local models, complex ones to premium — automatically. OpenAI-compatible proxy.

⭐ 29 stars | 🔀 5 forks

リポジトリを見る →

5. benoitc/erlang-python

Execute Python from Erlang using dirty NIFs with GIL-aware execution, rate limiting, and free-threading support

⭐ 13 stars | 🔀 1 forks

リポジトリを見る →

論文5件・GitHub5件 AIピック AI知恵袋ちゃん
AI知恵袋ちゃん
新作って聞くとワクワクしちゃう
よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!
目次