📝 この記事のポイント
- 🚀 AI技術の最新動向 – 2026年1月21日 世界中から収集したAI・機械学習の最新情報をお届けします 📑 目次 💻 注目のGitHubプロジェクト buyukakyuz/rig Infatoshi/batmobile RAZZULLIX/fast_topk_batched analyticalrohit/llms-from-scratch frangelbarrera/AI-Encyclopedia 📌 関連記事もチェック 📚 最新研究論文 1. VideoMaMa: Mask-Guided Video Matting via Generative Prior 著者: Sangbeom Lim, Seoung Wug Oh, Jiahui Huang Generalizing video matting models to real-world videos remains a significant challenge due to the scarcity of labeled data. To address this, we present Video Mask-to-Matte Model (VideoMaMa) that converts coarse segmentation masks into pixel accurate alpha mattes, by leveraging pretrained video diffu… 論文を読む → 2. Jet-RL: Enabling On-Policy FP8 Reinforcement Learning with Unified Training and Rollout Precision Flow 著者: Haocheng Xi, Charlie Ruan, Peiyuan Liao Reinforcement learning (RL) is essential for enhancing the complex reasoning capabilities of large language models (LLMs). However, existing RL training pipelines are computationally inefficient and resource-intensive, with the rollout phase accounting for over 70% of total training time. Quantized … 論文を読む → 3. APEX-Agents 著者: Bertie Vidgen, Austin Mann, Abby Fennelly We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work… 論文を読む → 💻 注目のGitHubプロジェクト 1. buyukakyuz/rig Distributed LLM inference across machines over WiFi ⭐ 19 stars | 🔀 2 forks リポジトリを見る → 2. Infatoshi/batmobile High-performance CUDA kernels for equivariant graph neural networks (MACE, NequIP, Allegro). 10-20x faster than e3nn. ⭐ 18 stars | 🔀 4 forks リポジトリを見る → 3. RAZZULLIX/fast_topk_batched High-performance batched Top-K selection for CPU inference. Up to 80x faster than PyTorch, optimized for LLM sampling with AVX2 SIMD. ⭐ 15 stars | 🔀 1 forks リポジトリを見る → 4. analyticalrohit/llms-from-scratch Build a ChatGPT like LLM from scratch in PyTorch, explained step by step. ⭐ 10 stars | 🔀 3 forks リポジトリを見る → 5. frangelbarrera/AI-Encyclopedia The most comprehensive AI encyclopedia with 800+ tools, resources, and cutting-edge AI applications ⭐ 4 stars | 🔀 0 forks リポジトリを見る → 📚 あわせて読みたい 「プロンプトは戦略だ!」と学んで劇的効率UP!私のAI活用術 私が実感!AIで物流の悩み解消、時間もコストも浮いた話 AI三つ巴!Geminiと私が出会って、ストーリー作りは変わった?。
🚀 AI技術の最新動向 – 2026年1月21日
世界中から収集したAI・機械学習の最新情報をお届けします
📑 目次
- 💻 注目のGitHubプロジェクト
- buyukakyuz/rig
- Infatoshi/batmobile
- RAZZULLIX/fast_topk_batched
- analyticalrohit/llms-from-scratch
- frangelbarrera/AI-Encyclopedia
- 📌 関連記事もチェック
📚 最新研究論文
1. VideoMaMa: Mask-Guided Video Matting via Generative Prior
著者: Sangbeom Lim, Seoung Wug Oh, Jiahui Huang
Generalizing video matting models to real-world videos remains a significant challenge due to the scarcity of labeled data. To address this, we present Video Mask-to-Matte Model (VideoMaMa) that converts coarse segmentation masks into pixel accurate alpha mattes, by leveraging pretrained video diffu…
2. Jet-RL: Enabling On-Policy FP8 Reinforcement Learning with Unified Training and Rollout Precision Flow
著者: Haocheng Xi, Charlie Ruan, Peiyuan Liao
Reinforcement learning (RL) is essential for enhancing the complex reasoning capabilities of large language models (LLMs). However, existing RL training pipelines are computationally inefficient and resource-intensive, with the rollout phase accounting for over 70% of total training time. Quantized …
3. APEX-Agents
著者: Bertie Vidgen, Austin Mann, Abby Fennelly
We introduce the AI Productivity Index for Agents (APEX-Agents), a benchmark for assessing whether AI agents can execute long-horizon, cross-application tasks created by investment banking analysts, management consultants, and corporate lawyers. APEX-Agents requires agents to navigate realistic work…
💻 注目のGitHubプロジェクト
1. buyukakyuz/rig
Distributed LLM inference across machines over WiFi
⭐ 19 stars | 🔀 2 forks
2. Infatoshi/batmobile
High-performance CUDA kernels for equivariant graph neural networks (MACE, NequIP, Allegro). 10-20x faster than e3nn.
⭐ 18 stars | 🔀 4 forks
3. RAZZULLIX/fast_topk_batched
High-performance batched Top-K selection for CPU inference. Up to 80x faster than PyTorch, optimized for LLM sampling with AVX2 SIMD.
⭐ 15 stars | 🔀 1 forks
4. analyticalrohit/llms-from-scratch
Build a ChatGPT like LLM from scratch in PyTorch, explained step by step.
⭐ 10 stars | 🔀 3 forks
5. frangelbarrera/AI-Encyclopedia
The most comprehensive AI encyclopedia with 800+ tools, resources, and cutting-edge AI applications
⭐ 4 stars | 🔀 0 forks
📚 あわせて読みたい


コメント