【AI最新動向 2026年1月14日】論文5件・GitHub5件

【AI最新動向 2026年1月14日】論文5件・GitHub5件

📝 この記事のポイント

  • 🚀 AI技術の最新動向 – 2026年1月14日 世界中から収集したAI・機械学習の最新情報をお届けします 📑 目次 💻 注目のGitHubプロジェクト panyisheng095-ux/VisionQuant-Pro superdoc-dev/docx-corpus samouraiworld/awesome-mistral dyneth02/YOLOv11-People-Enter-Exit-Detector ash-akash/ml-dl-foundations 📌 関連記事もチェック 📚 最新研究論文 1. Modeling LLM Agent Reviewer Dynamics in Elo-Ranked Review System 著者: Hsiang-Wei Huang, Junbin Lu, Kuang-Ming Chen In this work, we explore the Large Language Model (LLM) agent reviewer dynamics in an Elo-ranked review system using real-world conference paper submissions. Multiple LLM agent reviewers with different personas are engage in multi round review interactions moderated by an Area Chair. We compare a ba… 論文を読む → 2. Motion Attribution for Video Generation 著者: Xindi Wu, Despoina Paschalidou, Jun Gao Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and m… 論文を読む → 3. MemRec: Collaborative Memory-Augmented Agentic Recommender System 著者: Weixin Chen, Yuhan Zhao, Jingyuan Huang The evolution of recommender systems has shifted preference storage from rating matrices and dense embeddings to semantic memory in the agentic era. Yet existing agents rely on isolated memory, overlooking crucial collaborative signals. Bridging this gap is hindered by the dual challenges of distill… 論文を読む → 💻 注目のGitHubプロジェクト 1. panyisheng095-ux/VisionQuant-Pro 🤖 基于深度学习的AI量化投资系统 | Vision-Based Quantitative Trading System with Deep Learning ⭐ 56 stars | 🔀 4 forks リポジトリを見る → 2. superdoc-dev/docx-corpus The largest open corpus of .docx files for document processing research ⭐ 36 stars | 🔀 1 forks リポジトリを見る → 3. samouraiworld/awesome-mistral A curated list of awesome resources, tools, libraries, and projects for the Mistral AI ecosystem. ⭐ 30 stars | 🔀 0 forks リポジトリを見る → 4. dyneth02/YOLOv11-People-Enter-Exit-Detector A real-time bidirectional people counting and foot-traffic analytics system powered by YOLOv11 and OpenCV. Features multi-object tracking (MOT), dual-polygon region-of-interest (ROI) logic for entry/exit detection, and automated video reporting. Perfect for retail analytics and smart occupancy monitoring. ⭐ 4 stars | 🔀 0 forks リポジトリを見る → 5. ash-akash/ml-dl-foundations Research-oriented ML/DL foundations covering NumPy, Pandas, visualization, classical machine learning, and deep learning, with emphasis on fundamentals, reproducibility, and understanding model behavior. ⭐ 3 stars | 🔀 0 forks リポジトリを見る → 📚 あわせて読みたい 【AI最新動向】一歩先の未来へ!私が触れた最先端AIの世界 「プロンプトは戦略だ!」と学んで劇的効率UP!私のAI活用術 私が実感!AIで物流の悩み解消、時間もコストも浮いた話。
目次

🚀 AI技術の最新動向 – 2026年1月14日

世界中から収集したAI・機械学習の最新情報をお届けします


📑 目次

  1. 💻 注目のGitHubプロジェクト
    1. panyisheng095-ux/VisionQuant-Pro
    2. superdoc-dev/docx-corpus
    3. samouraiworld/awesome-mistral
    4. dyneth02/YOLOv11-People-Enter-Exit-Detector
    5. ash-akash/ml-dl-foundations
  2. 📌 関連記事もチェック

📚 最新研究論文

1. Modeling LLM Agent Reviewer Dynamics in Elo-Ranked Review System

著者: Hsiang-Wei Huang, Junbin Lu, Kuang-Ming Chen

In this work, we explore the Large Language Model (LLM) agent reviewer dynamics in an Elo-ranked review system using real-world conference paper submissions. Multiple LLM agent reviewers with different personas are engage in multi round review interactions moderated by an Area Chair. We compare a ba…

論文を読む →

2. Motion Attribution for Video Generation

著者: Xindi Wu, Despoina Paschalidou, Jun Gao

Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and m…

論文を読む →

3. MemRec: Collaborative Memory-Augmented Agentic Recommender System

著者: Weixin Chen, Yuhan Zhao, Jingyuan Huang

The evolution of recommender systems has shifted preference storage from rating matrices and dense embeddings to semantic memory in the agentic era. Yet existing agents rely on isolated memory, overlooking crucial collaborative signals. Bridging this gap is hindered by the dual challenges of distill…

論文を読む →

💻 注目のGitHubプロジェクト

1. panyisheng095-ux/VisionQuant-Pro

🤖 基于深度学习的AI量化投资系统 | Vision-Based Quantitative Trading System with Deep Learning

⭐ 56 stars | 🔀 4 forks

リポジトリを見る →

2. superdoc-dev/docx-corpus

The largest open corpus of .docx files for document processing research

⭐ 36 stars | 🔀 1 forks

リポジトリを見る →

3. samouraiworld/awesome-mistral

A curated list of awesome resources, tools, libraries, and projects for the Mistral AI ecosystem.

⭐ 30 stars | 🔀 0 forks

リポジトリを見る →

4. dyneth02/YOLOv11-People-Enter-Exit-Detector

A real-time bidirectional people counting and foot-traffic analytics system powered by YOLOv11 and OpenCV. Features multi-object tracking (MOT), dual-polygon region-of-interest (ROI) logic for entry/exit detection, and automated video reporting. Perfect for retail analytics and smart occupancy monitoring.

⭐ 4 stars | 🔀 0 forks

リポジトリを見る →

5. ash-akash/ml-dl-foundations

Research-oriented ML/DL foundations covering NumPy, Pandas, visualization, classical machine learning, and deep learning, with emphasis on fundamentals, reproducibility, and understanding model behavior.

⭐ 3 stars | 🔀 0 forks

リポジトリを見る →

📚 あわせて読みたい

論文5件・GitHub5件 AIピック AI知恵袋ちゃん
AI知恵袋ちゃん
最新版の進化がすごそう
よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人

コメント

コメントする

目次