【AI最新動向 2025年12月23日】論文5件・GitHub5件

【AI最新動向 2025年12月23日】論文5件・GitHub5件

📝 この記事のポイント

  • 🚀 AI技術の最新動向 – 2025年12月23日 世界中から収集したAI・機械学習の最新情報をお届けします 📑 目次 💻 注目のGitHubプロジェクト JarvisPei/SCOPE ahmetkumass/yolo-gen Shaivpidadi/refrag AmirhosseinHonardoust/Machine-Learning-Warning-Systems AmirhosseinHonardoust/Tumor-Doppelganger-Studio 📌 関連記事もチェック 📚 最新研究論文 1. Scalably Enhancing the Clinical Validity of a Task Benchmark with Physician Oversight 著者: Junze Ye, Daniel Tawfik, Alex J. Goodell Automating the calculation of clinical risk scores offers a significant opportunity to reduce physician administrative burden and enhance patient care. The current standard for evaluating this capability is MedCalc-Bench, a large-scale dataset constructed using LLM-based feature extraction and rule-… 論文を読む → 2. Pushing the Frontier of Audiovisual Perception with Large-Scale Multimodal Correspondence Learning 著者: Apoorv Vyas, Heng-Jui Chang, Cheng-Fu Yang We introduce Perception Encoder Audiovisual, PE-AV, a new family of encoders for audio and video understanding trained with scaled contrastive learning. Built on PE, PE-AV makes several key contributions to extend representations to audio, and natively support joint embeddings across audio-video, au… 論文を読む → 3. WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion 著者: Hanyang Kong, Xingyi Yang, Xiaoxu Zheng Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to … 論文を読む → 💻 注目のGitHubプロジェクト 1. JarvisPei/SCOPE SCOPE: Self-evolving Context Optimization via Prompt Evolution – A framework for automatic prompt optimization ⭐ 11 stars | 🔀 2 forks リポジトリを見る → 2. ahmetkumass/yolo-gen Train YOLO + VLM with one command. Auto-generate vision-language training data from YOLO labels – no extra labeling needed. ⭐ 9 stars | 🔀 1 forks リポジトリを見る → 3. Shaivpidadi/refrag REFRAG: LLM-powered representations for better RAG retrieval. Improve precision, reduce context size, same speed. ⭐ 9 stars | 🔀 4 forks リポジトリを見る → 4. AmirhosseinHonardoust/Machine-Learning-Warning-Systems A long-form article and practical framework for designing machine learning systems that warn instead of decide. Covers regimes vs decimals, levers over labels, reversible alerts, anti-coercion UI patterns, auditability, and the “Warning Card” template, so ML preserves human agency while staying useful under uncertainty. ⭐ 8 stars | 🔀 0 forks リポジトリを見る → 5. AmirhosseinHonardoust/Tumor-Doppelganger-Studio Similarity-first interpretability studio for breast tumor samples: pick a case, find its closest “twins” (benign/malignant look-alikes), visualize neighborhood structure, compare feature fingerprints, and run minimal-change counterfactual edits toward a target class. Educational demo only, not for diagnosis. ⭐ 7 stars | 🔀 0 forks リポジトリを見る → 📚 あわせて読みたい コールセンター応答率2倍!? 音声認識AI導入でオペレーター3割減の衝撃! 【衝撃】画像認識AI頂上決戦!Gemini圧勝の理由 製造業の品質検査、AIでコスト激減!?【完全自動化ガイド】。
目次

🚀 AI技術の最新動向 – 2025年12月23日

世界中から収集したAI・機械学習の最新情報をお届けします


📑 目次

  1. 💻 注目のGitHubプロジェクト
    1. JarvisPei/SCOPE
    2. ahmetkumass/yolo-gen
    3. Shaivpidadi/refrag
    4. AmirhosseinHonardoust/Machine-Learning-Warning-Systems
    5. AmirhosseinHonardoust/Tumor-Doppelganger-Studio
  2. 📌 関連記事もチェック

📚 最新研究論文

1. Scalably Enhancing the Clinical Validity of a Task Benchmark with Physician Oversight

著者: Junze Ye, Daniel Tawfik, Alex J. Goodell

Automating the calculation of clinical risk scores offers a significant opportunity to reduce physician administrative burden and enhance patient care. The current standard for evaluating this capability is MedCalc-Bench, a large-scale dataset constructed using LLM-based feature extraction and rule-…

論文を読む →

2. Pushing the Frontier of Audiovisual Perception with Large-Scale Multimodal Correspondence Learning

著者: Apoorv Vyas, Heng-Jui Chang, Cheng-Fu Yang

We introduce Perception Encoder Audiovisual, PE-AV, a new family of encoders for audio and video understanding trained with scaled contrastive learning. Built on PE, PE-AV makes several key contributions to extend representations to audio, and natively support joint embeddings across audio-video, au…

論文を読む →

3. WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion

著者: Hanyang Kong, Xingyi Yang, Xiaoxu Zheng

Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to …

論文を読む →

💻 注目のGitHubプロジェクト

1. JarvisPei/SCOPE

SCOPE: Self-evolving Context Optimization via Prompt Evolution – A framework for automatic prompt optimization

⭐ 11 stars | 🔀 2 forks

リポジトリを見る →

2. ahmetkumass/yolo-gen

Train YOLO + VLM with one command. Auto-generate vision-language training data from YOLO labels – no extra labeling needed.

⭐ 9 stars | 🔀 1 forks

リポジトリを見る →

3. Shaivpidadi/refrag

REFRAG: LLM-powered representations for better RAG retrieval. Improve precision, reduce context size, same speed.

⭐ 9 stars | 🔀 4 forks

リポジトリを見る →

4. AmirhosseinHonardoust/Machine-Learning-Warning-Systems

A long-form article and practical framework for designing machine learning systems that warn instead of decide. Covers regimes vs decimals, levers over labels, reversible alerts, anti-coercion UI patterns, auditability, and the “Warning Card” template, so ML preserves human agency while staying useful under uncertainty.

⭐ 8 stars | 🔀 0 forks

リポジトリを見る →

5. AmirhosseinHonardoust/Tumor-Doppelganger-Studio

Similarity-first interpretability studio for breast tumor samples: pick a case, find its closest “twins” (benign/malignant look-alikes), visualize neighborhood structure, compare feature fingerprints, and run minimal-change counterfactual edits toward a target class. Educational demo only, not for diagnosis.

⭐ 7 stars | 🔀 0 forks

リポジトリを見る →

📚 あわせて読みたい

論文5件・GitHub5件 AIピック AI知恵袋ちゃん
AI知恵袋ちゃん
これは要注目の新商品だね!
よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人

コメント

コメントする

目次